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Abstract. High quality deformations of planar and volumetric domains
are central to many computer graphics related problems like modeling,
character animation, and non-rigid registration. Besides common “as-
rigid-as-possible” approaches the class of nearly-isometric deformations
is highly relevant to solve this kind of problems. Recent continuous defor-
mation approaches try to find planar first order nearly-isometric defor-
mations by integrating along approximate Killing vector fields (AKVFs).
In this work we derive a generalized metric energy for deformation vec-
tor fields that has close-to-isometric AKVFs as a special case and addi-
tionally supports close-to-length-preserving, close-to-conformal as well as
close-to-equiareal deformations. Like AKVF-based deformations we min-
imize nonlinear energies to first order using efficient linear optimizations.
Our energy formulation supports nonhomogeneous as well as anisotropic
behavior and we show that it is applicable to both planar and volumetric
domains. We apply energy specific regularization to achieve smoothness
and provide a GPU implementation for interactivity. We compare our
approach to AKVF-based deformations for the planar case and demon-
strate the effectiveness of our method for the 2d and 3d case.
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1 Introduction

Persistent shape deformation is a classic problem in computer graphics and de-
sign. Even though numerous approaches haven been developed in the previous
decades, is is still an important and active area of research. Applications for
planar shape deformations include, e. g., image warping and cartoon animation.
Deformation of 3d shapes is used in classic domains like in engineering for shape
modeling or to create animations in the media industry, but also, e. g., for data
registration in medical applications.

A recent trend is the development of continuous nearly isometric meth-
ods [21,29]. These deformations should preserve distances and, as a result, angles
and area as much as possible. Intuitively, isometry is a good measure for the qual-
ity of a deformation: while the shape should accurately satisfy the constraints
defining the deformation, it should not unnecessarily stretch or bend. Hence,
near-isometric deformations yield intuitive and high quality results.
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However, this does not come for free! Roughly speaking, high quality near-
isometric deformations come for the price of solving nonlinear problems. This is a
major issue especially for interactive applications, which are typical in computer
graphics and are mandatory for interactive design. There is a competition with
more efficient linear methods (see, e.g., [5]), which are based on simpler, often
approximated differential quantities. It is well known that linear methods fail
to handle isometry: most approaches either cope well with translations or with
rotations – but not with both simultaneously. Also, there is no guarantee that
the deformation does not induce local folds or self-intersections. We arrive at
the conclusion that both, linear and nonlinear methods, have their own right
to co-exist in shape deformation frameworks: the user has the choice between
fast linear methods at the cost of sacrificing quality, and high quality nonlinear
methods that are significantly more expensive to compute.

The user has to pay a certain price – higher computation times or smaller
data sets – and therefore expects benefits from nonlinear methods. These include
not only geometric properties of the deformation but also other important cri-
teria related to usability. In summary, the computation of near-isometric shape
deformations should fulfill a number of requirements, which make their compu-
tation a challenging problem:

– The isometric deformation problem is nonlinear. Nevertheless, computation
must be effective and robust to guarantee a unique global optimum. In ad-
dition, computation must be efficient enough to enable real-time response
to user input.

– Deformations must interpolate constraints, which can be defined for any
point of the shape. Approximate satisfaction of “soft constraints” can be
tolerated only if arbitrarily small tolerances are possible in principle.

– Ideally, the user can – globally and locally – attenuate isometry such that
continuous blends from angle preservation to area preservation are possible.
Anisotropic behavior is an additional design parameter for the user.

– Deformations must be smooth in a sense that the energy or metric error
is distributed smoothly over the shape. In particular, the error must not
concentrate near positional constraints.

– The discrete deformations must be independent of the particular partition
of the shape or the domain. This implies resolution/tessellation invariance.

– Ideally, the formulation of the solution should be same for the 2d and the 3d
case. This alleviates implementation.

So far, we are not aware of any isometry-preserving shape deformation method
that meets all of the above design goals. In this paper, we present a new integral
approach to continuous shape deformation that fulfills all requirements. Our
approach is more general – but not more complicated – than previous methods.
We define a generalized metric energy that has flows as minimizer that determine
near-isometric, near-conformal, and to some extent near-equiareal deformations.
In particular, we show that the recently proposed planar deformations based on
as-Killing-as-possible vector fields (AKVF) [29] constitute a special case of our
energy.



Generalized Metric Energies for Continuous Shape Deformation 3

The derivation of error measures used in our method is neither based on the
popular as-rigid-as-possible (ARAP) approaches nor on the recently used notion
of discrete Killing fields. In contrast to iterative energy optimization required
for ARAP, which converges to local optima only, our method is non-iterative.
Instead, deformation is a time-dependent function, and we optimize for its deriva-
tive w.r.t. time and solve an initial value problem.

Our method can easily be integrated into existing tools. It is applicable to tri-
angle meshes in 2d as well as to tetrahedral meshes in 3d. It shares the common
intuitive user interface where few points are fixed and few points act as handles,
which can be dragged along paths in the domain by the user. In addition, the
user can control metric properties of the deformation: we provide a single scalar
parameter to obtain combinations of near-isometric and near-conformal defor-
mations on a continuous scale. This parameter can be given globally as a single
scalar or locally as a scalar field over the shape. Local anisotropic behavior is
achieved by incorporating varying anisotropic energy norms.

2 Background and Related Work

The deformation of a shape consists of a map from the original shape to the
deformed shape. Isometric maps preserve distances, which is equivalent to si-
multaneously preserving angles (conformal maps) and area (equiareal maps).
For a rigorous introduction of the differential geometry of such maps we refer to
[6]. Related to shape deformation is parametrization of surfaces, i.e., finding a
map between a surface in 3d and a planar domain. Naturally, isometry is a de-
sired property for such maps; a pioneering approach is the construction of most
isometric parametrizations [14]. Liu et al. [24] present hybrid parametrizations
that interpolate locally rigid or local similarity transformations, which is similar
to our generalized framework for continuous deformations. In the following, we
consider only shape deformation methods. For a discussion of parametrization
methods we refer to the survey of Hormann et al. [15]. We restrict our review of
related work to nonlinear deformation methods. For a review of linear methods
and a discussion of differences to nonlinear methods we refer to the survey [5].

A popular approach to isometry preservation is to restrict deformations lo-
cally to rigid transformations, i.e., translation and rotation. (Reflection is un-
desired.) This leads to the notion of the well-established as-rigid-as-possible
(ARAP) maps, which where initially introduced for shape interpolation [1] and
later applied for shape deformation [17,31]. Until today, there have emerged
numerous extensions like [3,32,20,8], to mention just a few. ARAP approaches
minimize a nonlinear energy expressing rigidity subject to constraints like fixed
and displaced points. The classic approach consists in an iterative algorithm,
which repeatedly estimates local rotations to build the global deformation un-
til convergence. There are also alternative nonlinear deformation energies that
enforce rigidity in form of, e. g., the rest energy of coupled rigid prisms [4]. In-
dependent of the energy and the particular numerical scheme, the deformation
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is obtained as the minimizer of a particular energy in the shape coordinates at
a singular point in time: we refer to such methods as single step methods.

In contrast, continuous methods evolve the deformation over time: the en-
ergy minimizer at each infinitesimal time step determines the gradient of the
deformation, and the final deformation is obtained as the solution of an ordi-
nary differential equation. From a technical point of view, the iterative solvers
for minimizing nonlinear energies are, roughly speaking, replaced by a numeri-
cal ODE integration method. The latter is a standard numerical problem that is
well-understood and that can be solved efficiently and reliably. In addition, the
mapping to the deformed shape is guaranteed to be locally bijective if the defor-
mation gradient does not vanish, i.e., if the deformation flow does not contain
critical points, and hence the deformations does not show local fold-overs. The
main benefit of the continuous methods, however, consists in the fact that finding
deformation gradients is a linear problem for near-isometric deformations.

Isometry preservation is guaranteed for integration of exact Killing vector
fields, see, e.g., [2]. Kilian et al. [21] approximate Killing vector fields for in-
terpolation in a shape space, which yields deformations of a 2-manifold that is
embedded in 3-space. Note that they compare this isometry preserving approach
to continuous deformations based on the ARAP concept, which yields a related
but different deformation class. Martinez et al. [25] extend their discretization
towards tessellation independence and smoothness. Heeren et al. [13] use physi-
cal discrete shell energies to construct time-discrete geodesics in a different shape
space. Solomon et al. [29] introduce the notion of as-Killing-as-possible (AKVF)
deformations in planar domains. In contrast to the above approaches, they ensure
smoothness by a post-process rather than by a regularization term, and instead
of a standard ODE solver, they use planar holomorphic curves as a predictor to
construct the trajectories. They obtain high quality deformations, which they
compare to various other planar shape deformation methods. In summary, their
results suggest that it is more than worthwhile and often preferable to consider
near-isometric shape deformations.

Funck et al. [11] developed a remarkably different approach to continuous
3d shape deformation, which preserves volume by integration of divergence-free
vector fields. Continuous deformation can also be obtained by fitting continuous
shape manifolds to key frames [7].

There are various alternative methods for planar and volumetric shape de-
formation. One prominent class of methods is based on generalized barycentric
coordinates, e.g., [16,19,23,18,33,34]. Besides isometry here is also a demand for
conformal maps, which are produced by none of the above methods.

3 Continuous Metric Energies

In this section we introduce continuous deformations formally and derive en-
ergy terms that determine isometric and conformal deformations in 2d and 3d.
The section concludes with a generalized formulation of an integral energy that
determines a one-parameter family of continuous deformations, which includes
near-isometric, near-conformal, and close-to-equiareal deformations.
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(a) Near-isometric. (b) Near-conformal.

Fig. 1. 2D Deformation Examples. On the straight strip some vertices were fixed (•)
while some vertices were moved (•) (all models have the same scale). The deformations
are generated by AMAP (8) and ACAP (12) vector fields. Note the approximate length
preservation in (a), and the preservation of angles and the area deviation in (b).

3.1 Continuous Deformations

A continuous deformation is a time-dependent map f : Ω0
d × IR → IRd with

Ω0
d ⊆ IRd, i.e., a time-dependent map from a domain Ω0

d to IRd. We primarily
consider the important dimensions d = 2 and d = 3 in this work but also provide
some generalizations for higher dimensions. Let X0 ⊆ Ω0

d be a point set defining
some initial shape. Then the deformed shape at time t is expressed as the image
f(X0, t). We use the short notation Ωd = f(Ω0

d, t) for the deformed domain at
the current time t, which is clear from the context.

We define the velocity of f as the vector field v(x, t) = d
dt f(x, t). Then f(x, t)

can be reconstructed from v by solving the initial value problem

d

dt
x(t) = v(x, t) with x(0) = X0 .

In the following, we derive conditions on v that lead to near-isometric and
near-conformal maps f . The conditions are characterized as the minimizers of
certain energy terms w.r.t. interpolation constraints on v. Figure 1 shows exam-
ples for deformations that were determined by this kind of vector fields.

3.2 Characteristic Deformations

For a single step (i. e., not time-dependent) deformation f : Ω0
d → IRd with defor-

mation gradient D = ∇f the first fundamental form I of f has the particularly
simple form

I = DT D .

Therefore, the singular values σi of D are square roots of the eigenvalues λi
of I. Then the following equivalent local properties of the deformation map
can be shown (see, e. g., the work of Floater and Hormann in the context of
parameterizations for the case of d = 2 [10]):

1. f is isometric ⇔ I = I ⇔ λi = 1 ⇔ σi = 1, (1)

2. f is conformal ⇔ I = µ I ⇔ λi
λj

= 1 ⇔ σi
σj

= 1, (2)

3. f is equiareal ⇔ det I = 1 ⇔
∏d
i=1 λi = 1 ⇔

∏d
i=1 σi = 1 . (3)
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Note that surface parameterizations can be regarded as deformations between
2d and 3d, and in this work we consider the instantaneous deformation energy.

When deformations are parameterized by time t (i. e., we have continuous
f(x, t) and D(x, t)) these properties can be differentiated in order to obtain defin-
ing conditions on the vector field of the continuous deformation. Specifically, we
apply the matrix algebra described by Minka [27] to obtain matrix derivatives
w. r. t. t. They define the differential dy(x) to be the part of y(x+dx)−y(x) that
is linear in dx. Differentials are obtained by iteratively applying a set of differ-
entiation rules. After transformation into canonical form the matrix derivative
can directly be read off.

3.3 Isometric Energies

Exact isometric deformations that fulfill all user constraints are not always pos-
sible. Therefore, measures for the deviation from isometry are required and we
continue to present two possible models: Killing and metric energies.

Killing energy. The matrix derivative of the isometry property is obtained by
deducing the differential of (1), which gives

dDT D + DT dD = 0

using the product rule d(AB) = dAB + AdB and dI = 0. This equality has
to hold for every time t of the continuous deformation. Specifically, for t = 0
we have D(x0, 0) = I and by using dD = JT, where J is the Jacobian of the
tangent vector field of f , we obtain

JT + J = 0 (4)

as the condition for f to be isometric expressed in the vector field of the continu-
ous deformation. Equation (4) corresponds to the constraint that exact isometric
deformations are generated by infinitesimal rotations, since the symmetric part
of their Jacobian, which is skew-symmetric then, vanishes.

The L2 deviation of (4) over a domain Ωd

EAkvf(v) =

∫
Ωd

∣∣∣∣JT + J
∣∣∣∣2
F

dx (5)

is called Killing energy with the Frobenius norm ||·||F . It is used by Solomon et
al. [29] for the case d = 2 to define as-Killing-as-possible vector fields v that min-
imize EAkvf and which therefore generate near-isometric planar deformations.
Higher dimensional cases (d > 2) are also well-defined. Note that the Jacobian is
linear in the unknown vector fields v as differentiation is a linear operation, i. e.,
there exists a gradient operator G on Ωd with J = Gv. Therefore, the energy
(5) is quadratic in v and the corresponding variational optimization of (5) leads
to a linear system that can efficiently be solved for the optimal vector field.
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Metric energy. The classic Killing energy (5) uses the Frobenius norm of (4)
to measure deviation from isometry. We propose a related energy that measures
another form of deviation from isometry that is not based on a L2 deviation of
(4). Informally spoken, our energy directly observes an infinitesimally small line
segment and measures change of length under an infinitesimal integration step
in v. This is done for all possible infinitesimal segments, i.e., we integrate the
(squared) change of length over all possible directions. We call this energy metric
as distance variations are measured explicitly. We start with the derivation of
the 2d case followed by the 3d case.

In order to measure the variation of length under integration in v we consider
a line segment S between points x0 and x1 = x0 + r1 r1 for a unit direction r1
and segment length r1. The flow of S in v is given as x′0(h) = x0+

∫ h
0
v(x′0(s))ds

and x′1(h) = x1 +
∫ h
0
v(x′1(s))ds. This induces the quadratic length variation

dl(h) = ||x1 − x0||2 − ||x′1(h)− x′0(h)||2 .

Since we are interested in instantaneous variations (i.e., the length variation
of an infinitesimal small line segment during an infinitesimal small integration)
only, we consider the limit

dl0(r1) = lim
h→0, r1→0

dl(h)

r21 h
=

∂3dl(h)

∂r21 ∂h
.

dl0 measures the instantaneous quadratic length variation for the direction r1. We
obtain the pointwise quadratic isometric energy eMetr(x0,v) at x0 by considering

all possible line segment directions given by r1(α) = (cos(α) , sin(α) )
T

:

eMetr(x0,v) =
1

2π

∫ 2π

0

dl0(r1(α))2 dα . (6)

It can be shown that (6) has the following closed form solution that depends
only on the Jacobian of v3:

eMetr(x0,v) = u2x + v2y +
1

2
(uy + vx)

2
+

1

2
(ux + vy)

2

= c
(∣∣∣∣J + JT

∣∣∣∣2
F

+ 2 (Tr J)
2
)
. (7)

Here J =
[ ux uy
vx vy

]
denotes the Jacobian of v at x0, Tr · is the trace of a matrix,

and c is a constant factor. The total metric energy of a vector field v on Ω2 is
now given by

EMetr(v) =

∫
Ω2

eMetr(x,v) dx . (8)

We call vector fields that minimize this energy as-metric-as-possible (AMAP)
vector fields. Figure 1(a) shows examples for deformations that were determined
by this kind of vector fields.

3 The derivation of equivalence is lengthy but consists only of basic algebraic trans-
formations and therefore is omitted in the paper. — We provide derivations in form
of Maple scripts for all closed form solutions of integrals in this submission with the
additional material.
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We derive a similar energy for d = 3 dimensions using the same ansatz as
above for d = 2. Again we take the integral over all possible configurations of an
infinitesimal integration step of an infinitesimally small line segment between two
points x0 and x1 = x0+r1 r1. The main difference to the 2d case is that angles in
the plane now have to be replaced by solid angles. For the spherical parametriza-
tion of the unit direction r1(α, β) = (cos(α) cos(β) , sin(α) cos(β) , sin(β) )

T ∈ IR3

we obtain the pointwise quadratic metric energy as the integral

eMetr3d(x0,v) =
1

4π

∫ 2π

0

∫ π
2

−π2
cos(β) dl0(r1(α, β))2 dβ dα , (9)

which again has the closed form solution

eMetr3d(x0,v) = c
(∣∣∣∣J + JT

∣∣∣∣2
F

+ 2 (Tr J)
2
)
. (10)

Interestingly the factors of (7) and (10) only differ in the constant c, although
their dimensions differ. The total 3d metric energy is then obtained as

EMetr3d(v) =

∫
Ω3

eMetr3d(x,v) dx .

We again call the minimizers of this energy as-metric-as-possible vector fields. In
the following we will use the terms Metr and Metr3d synonymously whenever
the context is clear.

3.4 Conformal Energy

The differential of (2) is given by

dDTD + DT dD = dµ I .

We again evaluate it at t = 0, and by setting dµ = α we obtain

JT + J = α I

as the condition for the continuous deformation f to be conformal. Note that
here α is an additional degree of freedom stating the fact that instantaneous
uniform scaling is conformal for every scaling factor.

We derive a pointwise energy / energy density eConf that measures the L2

deviation of this conformality condition. The construction of the energy holds
for any dimension d from which important two and three-dimensional special
cases can be obtained:

eConf =
∣∣∣∣JT + J− α I

∣∣∣∣2
F

= Tr
((

JT + J− α I
)T(

JT + J− α I
) )

= Tr
((

JT + J
)T(

JT + J
) )

+ Tr
(
−2α

(
JT + J

)
+ α2I

)
=
∣∣∣∣JT + J

∣∣∣∣2
F
− 2αTr

(
JT + J

)
+ dα2

=
∣∣∣∣JT + J

∣∣∣∣2
F
− 4αTrJ + dα2 (11)



Generalized Metric Energies for Continuous Shape Deformation 9

This energy formulation still depends on the scaling factor α. To obtain an
expression that is independent of this parameter we consistently set it to the
value that minimizes the value of the energy. That is, we solve ∇α eConf = 0 for
α, which gives α = 2

d TrJ. Inserting this result into (11) we obtain

eConf =
∣∣∣∣JT + J

∣∣∣∣2
F
− 4

d
(TrJ)

2

for the general d-dimensional pointwise conformal energy in the vector field of
the continuous deformation. The total conformal energy of the vector field is
then given by

EConf(v) =

∫
Ωd

∣∣∣∣JT + J
∣∣∣∣2
F
− 4

d
(TrJ)

2
dx .

Again, this energy is quadratic in the vector field. We call vector fields minimizing
this energy as-conformal-as-possible (ACAP). The important low-dimensional
special cases are

EConf2D(v) =

∫
Ω2

∣∣∣∣JT + J
∣∣∣∣2
F
− 2 (TrJ)

2
dx and (12)

EConf3D(v) =

∫
Ω3

∣∣∣∣JT + J
∣∣∣∣2
F
− 4

3
(TrJ)

2
dx .

See Figure 1(b) for example deformations that were determined by these vector
fields.

3.5 Equiareal Energy

In order to obtain the condition on the vector field for the continuous de-
formation to be equiareal, we differentiate (3) using the differentiation rule
d detA = detA Tr

(
A−1 dA

)
:

d det
(
DTD

)
= 2 (d detD) detD

= 2
(
detD Tr

(
D−1 dD

) )
detD

= Tr
(

2 (detD)
2
D−1 dD

)
(13)

Evaluating (13) at t = 0 and using dD = J the equiareal condition on the vector
field simplifies to

TrJ = 0,

which states that the vector field has to be divergence free as TrJ = ∇ · v. The
corresponding L2 pointwise equiareal energy eEquia = (∇ · v)

2
yields the total

equiareal energy

EEquia(v) =

∫
Ωd

(∇ · v)
2

dx .
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wq

wr

φMetr

φAkvf

φConf3d

φConf2d

φEquia

Energy wq : wr φ

Metr 2d & 3d 1 : 2 arctan 1
2

Conf 2d 1 : −2 π − arctan 1
2

Conf 3d 1 : − 4
3

π − arctan 4
3

Akvf 2d & 3d 1 : 0 π
2

Equia 2d & 3d 0 : 1 0

Fig. 2. Energy Parameter Domain. The different energies obtained from the general
metric energy Eφ(v) are linear subspaces in the visualized domain of weights wq and
wr, i.e., every pair of weights in a subspace yields the same energy minimizer. However,
energies may not have unique minimizers, like the Equia energy in the limit.

3.6 A Generalized Family of Energies

In the following we relate the near-isometric, near-conformal, and near-equiareal
energies to derive a generalized energy. This is a one-parameter family of energies
that determine smooth blends between the different types of deformation.

We define

q(x) :=
∣∣∣∣∣∣J(x) + J(x)

T
∣∣∣∣∣∣2
F

and r(x) := (Tr J(x))
2
.

Then all energy densities introduced so far can be expressed as linear combi-
nations of q(x) and r(x). Uniform scaling of such an energy does not change
the minimizing vector field. Therefore, we can describe all energies as a one-
parameter family of generalized metric energies depending on φ:

Eφ(v) =

∫
Ω2/3

wq(φ) q(x) + wr(φ) r(x) dx

with the weights wq(φ) := sin(φ) and wr(φ) := cos(φ) having specific ratios. In
2d, φ can vary in the interval ]0, π − arctan 1

2 ], while in 3d, φ varies in ]0, π −
arctan 4

3 ]. Then the parameter of the isometric energies is given by φ = φAKVF =
π
2 , resp.φ = φMetr = arctan 1

2 , and the minimizers of EφAKVF
(v) and EAKVF(v),

resp.EφMetr
(v) and EMetr(v) are equal. Furthermore, the conformal energy is

given by φ = φConf2D = π − arctan 1
2 in 2d and by φ = φConf3D = π − arctan 4

3
in 3d, respectively. The equiareal energy is recovered for φ = φEquia = 0. We
note that volume preservation is not a sufficient condition for uniquely defining
v. However, adding a small amount of q to Eφ (i. e., choosing φ slightly above
zero) gives unique solutions corresponding to near-equiareal deformations.

Figure 2 illustrates different choices of φ. Note that for φ > π
2 , Eφ contains

negative quadratic terms. However, due to the definition of conformal energy
density (11) as a squared matrix norm, it is guaranteed that Eφ is non-negative
as long as φ ≤ π − arctan 1

2 (2d) and φ ≤ π − arctan 4
3 (3d), and that a unique

minimizer exists.

Anisotropic Energies. The energy formulations presented so far are isotropic
as distortions are measured in every direction in an uniform way. We model
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anisotropic behavior by replacing the isotropic Frobenius norm with an aniso-
tropic norm ||·||2B defined by a rank-2 tensor field of symmetric positive definite

matrices B: ||A||2B = Tr
(
AT BA

)
. For example, the pointwise energy (11) then

becomes

eConf =
∣∣∣∣JT + J− α I

∣∣∣∣2
B

=
∣∣∣∣JT + J

∣∣∣∣2
B

+ Tr
(
−2α

(
JT B + BJ

) )
+ Tr

(
α2 B

)
=
∣∣∣∣JT + J

∣∣∣∣2
B
− 4α Tr(BJ) + γ α2

=
∣∣∣∣JT + J

∣∣∣∣2
B
− 4

γ
(Tr(BJ) )

2
,

where we have set γ = TrB and used the identity Tr(AB) = Tr(BA) together
with the solution of ∇α eConf = 0, which is α = 2

γ Tr(BJ). In the special case

of B = I the isotropic case is recovered as then ||·||B ≡ ||·||F and γ = d.

4 Discrete Setting

Let P = (V, T ,x) be a partition of Ωd (at a particular time t) with vertices
V and cells T (triangles for d = 2 and tetrahedra for d = 3). Furthermore,
let m = |V| denote the number of vertices, and xi ∈ IRd with i ∈ V denote
vertex positions. We express a vector field v as piecewise linear functions on P:
v is given as nodal values vi, i ∈ V; we write v as the a single column vector

v = (v1
T, . . . ,vm

T)
T ∈ IRdm. Its piecewise constant Jacobian field is given as

matrices Jc on cells c ∈ T .

Energy Minimization. In the discrete setting, Eφ is a quadratic form in

the unknown vector field: Eφ(v) = vT Eφ v. The matrix Eφ ∈ IRdm×dm is the
symmetric positive definite sparse matrix defining Eφ. With the Jacobians being
constant on each cell, the coefficients of Eφ are the sum of matrices Ecφ that
capture the local error Ecφ on cell c as

Ecφ(v) =

∫
Ωc

wq(φ) q(x) + wr(φ) r(x) dx

= Vc

(
wq

∣∣∣∣∣∣Jc + Jc
T
∣∣∣∣∣∣2
F

+ wr (Tr Jc)
2

)
= vc

T Ecφ vc .

Here the vector vc ∈ IR6 (d = 2) or resp.vc ∈ IR12 (d = 3) is the concatenation
of velocities of the vertices of c, Jc is the constant Jacobian on c, and Vc is
the volume of the cell, triangle area or tetrahedral volume, which weights the
constant expressions during integration over the discrete domain P.

We use interpolation constraints on the flow v. This means that the user
prescribes trajectories γk(t) that define the flow of some vertices k ∈ V. This
yields conditions vk(t) = d

dtγk(t) as the flow along the trajectories is defined
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Fig. 3. Smoothness Energy. In 2d (left) and 3d (right) minimizers of the generalized
metric energy are discontinuous near user constraints (fixed • and handle • vertices)
leading to the highlighted local discontinuous deformations (small images show metric
distortions, see Section 6). The smoothness energy term yields smooth vector fields and
therefore smooth deformations. Note that both interior (left) and boundary vertices
(right) can be constrained.

by their tangents. Not that this includes the special case of “fixed” vertices for
which the trajectory is a constant domain point with vk(t) ≡ 0.

The vector field v̂ minimizing the energy is given as the solution to the linear
system ∇Eφ(v) = 0 subject to these constraints. In Section 5 we discuss how to
setup Eφ and solve the arising linear systems efficiently.

Enforcing Smoothness. The derived energies do not enforce smoothness of
the solution. This means that even though we obtain a minimizer the residual
energy is not distributed smoothly over the domain. In particular, this leads to
high concentration of metric error near constrained vertices. Lipman observes
this effect for finite ARAP deformations [22]. This problem was also already
discussed by Solomon et al. [29]. Their solution consists in a post-process: they
solve an additional linear system that diffuses the error to construct smooth
vector fields. This consequences: firstly, an additional solving step is required, and
secondly, the previously defined constraints can only be satisfied approximately.
During time-integration, this approach can leads to significant drift from the user
defined trajectories. Moreover, we show that the total resulting deformation error
increases unnecessarily (see Section 6).

We take a different approach based on regularization. We define smoothness
as the local first order energy variation. This way local deformation errors vary
smoothly and do not concentrate, e. g., only at the constrained vertices. The local
energy of a cell depends on its constant local Jacobian, i.e., there is variation only
on the cell boundaries. Let ci, cj ∈ T be two neighboring cells with Jacobians
Ji,Jj , and local energy parameters φi, φj , respectively. As Ecφ depends only on

Jc we obtain the integrated variation Ei,jS for the pair (ci, cj) as

Ei,jS (v, φ) = Bi,j

∣∣∣∣∣∣4(Dq
i,j + Dq

i,j
T
)

+ 2 TrDr
i,j I

∣∣∣∣∣∣2
F

with Ds
i,j = wsj Jj − wsi Ji and wsi = ws(φi) for s ∈ {q, r}, and Bi,j denotes

the length of the common edge of adjacent triangles (d = 2) or the area of the
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GPU
CPU

Repeated sparse sym-
bolic Cholesky solve

Fig. 4. GPU Pipeline. We use the GPU to setup linear systems and perform vector
field integration. The linear systems are solved on the CPU using an efficient sparse
solver. Operations marked (•) are performed in parallel on the GPU.

common triangle of adjacent tetrahedra (d = 3). See Appendix A for a derivation.
Note that Ei,jS is quadratic in v. The total discrete smoothness energy is then
given by the sum over all adjacent cells

ES(v, φ) =
∑

i,j∈T adjacent

Ei,jS (v, φ) .

This energy has the quadratic form ES = vT ES v that acts as a regularization
term in a weighted total energy in the deformation vector field

E(v, φ) = Eφ(v) + λES(v, φ) .

Its quadratic form is E(v, φ) = vT (Eφ + λES) v := vT Ev. Hence, we compute
a smooth minimizer of Eφ by solving ∇ v̂T E v̂ = 0. We use a factor of λ = 0.1
in all our examples. Figure 3 illustrates the effect of using the regularization
term ES in two and three dimensions. Note that smoothness of the vector field
is preserved for handles in the interior as well as on the boundary of the domain.

Shape Integration. We are left with the problem of solving an ODE numer-
ically: we solve d

dtxi(t) = v̂(xi(t), t) with initial vertex positions xi(0), i ∈ V,
using a standard ODE solver. For every evaluation of the vector field the energy
minimizing flow v̂ is computed from the current shape configuration.

5 Implementation

Modeling Metaphor. In contrast to finite deformation methods, continuous
deformations require velocities as boundary constraints (cf. [29,21]). There are
various ways to prescribe velocities. In the simplest case they are provided as
zero vectors for fixed vertices. Translations can be modeled by constant velocities,
rotations can be expressed by linear flows. A fairly general and intuitive approach
is the definition of a space-time curve that acts acts as trajectory, i.e., velocity
along the curve is defined as the tangent vector. It is easy to extend this approach
to define a laminar “bundle” of trajectories that are defined by the Frenet frame
of a single curve [12].

In addition to constraints, the user can model nonhomogeneous energies by
changing the scalar parameter φ and the tensor field B. This can be done globally
or locally per cell, e.g., by a spatial blend (see Figure 7). From the users point
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of view, near-isometric deformations often behave similarly to stiff real materi-
als, while near-conformal deformations often exhibit strong scaling components
towards smaller and larger area.

GPU Implementation. We use the GPU to accelerate certain steps of our
deformation algorithm. Figure 4 provides an overview, with matrix dimensions
given for the 2d case. In summary, the setup of the linear system and the inte-
gration of vertices are performed in parallel on the GPU, and the sparse system
is solved on the CPU. First, all triangle gradient operators Gi are computed in
parallel. These are required to compute the energy terms Eφ and ES . Then the
energy gradients are computed in parallel by exploiting symmetry for each cell
and for each pair of adjacent cells. The results are summed by a parallel seg-
mented reduction operation to give the final linear system. The sparse system is
downloaded to CPU memory, where it is solved using a state- of-the-art sparse
Cholesky solver that uses a precomputed symbolic factorization and an approx-
imate minimum degree preordering to reduce fill-in [9]. In our experiments this
direct system solve is up to four times faster than solving the linear system on the
GPU using an iterative sparse solver. Compared to a pure CPU implementation
using the GPU is up to three times faster. This is because the cost for system
setup are significant as multiple systems need to be solved during integration.
Finally, shape integration along the optimal flow v̂ is performed on the GPU.
We use a standard fourth-order Runge-Kutta integrator with adaptive step size
control.

6 Analysis and Results

Energy Comparison. We evaluate the angle and volume quality of deforma-
tions using the following error terms

F 2D
angle =

∑
c∈T2

ρc

(
σ1
c

σ2
c

+
σ2
c

σ1
c

− 2

)
F 3D
angle =

∑
c∈T3

ρc

 ∑
(j,k)∈P3

(
σjc
σkc

+
σkc

σjc

)
− 6


F 2D
area =

∑
c∈T2

ρc

(
σ1
cσ

2
c +

1

σ1
cσ

2
c

− 2

)
F 3D
volume =

∑
c∈T3

ρc

(
σ1
cσ

2
cσ

3
c +

1

σ1
cσ

2
cσ

3
c

− 2

)
.

These errors are established in the literature (see, e.g., [29]) and are based on
Equations (1-3). Here σjc is the jth singular value of the Jacobian of the map of
triangle or tetrahedra c, ρc = Vc/

∑
j∈T Vj with triangle area or tetrahedral volume

Vc, and P3 = {(1, 2) , (2, 3) , (3, 1) }. To measure metric errors we introduce the
error terms

F 2D
metric =

∑
c∈T2

ρc

((
σ1
c − 1

)2
+
(
σ2
c − 1

)2 − 1

4

(
σ1
c − σ2

c

)2)
(14)

F 3D
metric =

∑
c∈T3

ρc

 3∑
j=1

(
σjc − 1

)2 − 1

5

∑
(j,k)∈P3

(
σjc − σkc

)2 (15)
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Energy F 2D
metric F 2D

angle F 2D
area

Metr 0.0228 0.0216 0.036 0.0692 0.0155 0.0137
Akvf 0.028 0.0273 0.0211 0.0443 0.033 0.028
Conf 0.752 0.0902 0.0001 0.0098 0.978 0.273
Equia 0.0297 0.0489 0.1102 0.1864 5 · 10−6 4 · 10−6

Fig. 5. 2D Energy Evaluation. Two initial models (left) are deformed using the same
boundary constraints for the different energy types. The plots visualize color coded
local errors. The Conf error plots for the frog are downscaled to 75% size. The table
gives total errors for each method and each model (frog left / giraffe right column).

that are the weighted sum of solutions of integrals of the form of (6) and (9).
The difference to the previous derivation of energies is that the integrand is
no pointwise infinitesimal quadratic length variation but the pointwise finite
quadratic length variation induced by the map and integrated along all possible
directions. In the optimal case all error terms are zero.

Figure 5 shows error values and error visualizations for two planar defor-
mations. For the Equia results we used φ = arctan 2−9. The Metr energy
generating near-isometric vector fields achieves lowest metric and area distor-
tions at the cost of change of angle. Deformations based on the Akvf energy
show better angle preservation compared to Metr, but they also show greater
errors in length and area variation. Almost no angle distortion is introduced by
ACAP vector fields based on the Conf energy, however, this is at the cost of area
errors. The opposite is true for the Equia deformation that introduces almost
no area error but instead a large angular error. The experiment confirms that
the parameter φ corresponds to balance between metric and area preservation
on the one side and angular preservation on the other side (cf. Figure 2). No
deformation can preserve all properties at the same time.

In Figure 6 we compare our energies (including AKVF) to the original method
in [29] that uses “soft” handle constraints and achieves smoothness by a error
diffusion. Note that the softly constrained vertices drifted significantly. To com-
pensate for this effect and for a fair comparison, the constraints were selected
such that the trajectories of all handles (•) end in the (optimally) fixed soft han-
dles (•) after the same integration time. The two AKVF and the Metr results
look visually similar, however, all three error values indicate that our AKVF
approach using a problem dependent smoothing term achieves deformation of
lower error.
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Energy F 2D
metric F

2D
angle F

2D
area

[29] Akvf 0.084 0.075 0.080
Our Akvf 0.048 0.059 0.042
Metr 0.041 0.091 0.018
Conf 0.227 0.001 0.338

Fig. 6. Akvf Comparison. A symmetric strip deformation is used to evaluate our
energies and compare them to the original AKVF formulation [29] that uses no energy
based smoothing and only soft constraints. The color coded images visualize local error
components, which are all scaled equally.

Fig. 7. Left: A nonhomogeneous parameter φ is given as a scalar field in form of a blend
from φMetr on the left side of the frog’s domain to φConf on the right. Deformation
constraints are defined symmetrically on both sides of the model. Right: An isotropic
deformation compared to a deformation of anisotropic material with a locally “stiffer”
axis direction. Equal deformation constraints were applied in both cases together with
φAKVF.

Figure 10 shows frames of the animation of a volumetric mesh. The wings
of the eagle were deformed symmetrically using three-dimensional AMAP and
ACAP deformations as well as with an Equia vector field with φ = arctan 2−9.
Again, the conformal energy trades volumetric error for angle preservation while
the isometric energy has better length and volume preservation properties at the
expense of angular distortion. Best volume preservation but also most angular
distortions is achieved by the equiareal deformation. This is also reflected in the
error values of the animation steps (I) and (III) given in the table. Note that we
also included the Akvf errors of the same 3d deformation, which is not shown.

Energy Parameter. Figure 7 (left) shows an example where a nonhomoge-
neous parameter φ is prescribed as a scalar field on the domain. In the example
we use a spatial blend from near-isometric (left side) to conformal (right side).
Defining symmetric constraints shows the nonhomogeneous effect of φ.
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Fig. 8. 2D Deformation Examples. The triangulated models in the box were deformed
using AMAP and ACAP vector fields.

In Figure 7 (right) we demonstrate the effect of using an anisotropic material
compared to an isotropic one. Specifically, we define a region in the center of the
strip that is “stiffer” along one prescribed axis modeled by a corresponding tensor
field B. The material modification leads to two near-isometric deformations of
different characteristics for the same boundary constraints.

Independence of Tessellation. The discretization of
our energies are integrated measures on the discretized
domain. We expect that the resulting deformations are
independent of the partition, i.e., of the tessellation, as
long as there are enough degrees of freedom available to
represent the constrained deformation. This is confirmed
by all our experiments (see the adjacent Figure for an
example).

Modeling Results. Figure 8 shows initial 2d shapes
and two deformed versions using AMAP and ACAP de-
formations. The model size ranges from 5k to 11k vertices and the modeling
time was below four minutes in every example. More 2d examples are shown in
Figures 1(a), 1(b), and 5. Besides the animation in Figure 10 we show further
tetrahedral deformations in Figure 9. Again we have the initial shapes together
with AMAP and ACAP deformations. The meshes contain between 1, 500 to
5000 vertices. Again modeling time of an inexperienced user ranges from a few
seconds to a few minutes. None of our tests suffered from stability issues, not
even for extreme deformations. In particular, we didn’t observe local folds or
flips. This is due to the fact that the energy minimizing vector field generally
does not vanish.

Timings. The following tables lists timings of our approach for the smallest and
largest models, 2d and 3d, respectively. We measured the time for the initial fac-
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Fig. 9. 3D Deformation Examples. The tetrahedral models in the box were deformed
using AMAP and ACAP vector fields to give the shown results.

torization of the linear system (t1), system setup time (t2), and time to solve the
system (t3), and the total time T to perform ten consecutive integration steps.

Model (|T | , |V|) t1(ms) t2(ms) t3(ms) T (s)

Toucan (5.6k, 9.6k) 230 6 40 1.9
Cat (11k, 18k) 642 13 68 3.8

Octopus (1.5k, 5k) 168 19 51 2.9
Teapot (5k, 16k) 424 31 118 6.3

Compared to a sole CPU im-
plementation our parallel system
setup using the GPU is up to
three times faster even though
the system has to be transferred
to the CPU before solving it.
Timings were measured on an
AMD Phenom II 955 quad-core CPU with 3.2GHz clock speed equipped with a
NVIDIA GTX 560 Ti GPU with 2 GB of memory. Our approach is interactive for
reasonably sized models. However, as is true for most solvers of nonlinear mea-
sures, also has much higher computational costs compared to linear methods.
Please see also the accompanying video.

7 Discussion

Most existent geometrically-motivated approaches either optimize for near-iso-
metric [17,31,21,29] or for near-conformal deformations [33,34]. In contrast to
this our generalization combines both extrema in an integral formulation, and it
can be applied the same way in 2d and in 3d!

The results in Solomon et al. [29] indicate that their AKVF approach yields
deformations of superior quality compared to related methods. It seems that
for many shape deformation tasks near-isometry is the desired property. Our
approach not only is able to reproduce their results but it shows even better
behavior, getting even closer to isometric maps. At the same time our method
is less complex and more efficient as we achieve smoothness by a regularization,
enable true interpolation constraints and use standard ODE solvers.

Our main feature, however, is the ability to control the deformation by the
parameter φ from conformal to equiareal with AKVF and our definition of near-
isometric deformations in between. To the best of our knowledge, this approach
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(I) (II) (III) (IV)

(I)/(III) Metr Conf Akvf Equia

F 3D
metric 0.061 0.069 0.172 0.072 0.083 0.091 0.386 0.211
F 3D
angle 0.356 0.421 0.022 0.027 0.305 0.357 2.357 1.367
F 3D
volume 0.009 0.007 0.273 0.051 0.028 0.012 9 · 10−4 4 · 10−4

Fig. 10. 3D Eagle Deformation. A tetrahedral model of an eagle (top left, with instan-
taneous vector field) was deformed in an animation of steps I-IV. The closeups show
intermediate steps for different energies. Note the greatest volume of the conformal
deformation.

is the first that provides such range of deformations in a single and concise
mathematical framework. Our Metr energies are an alternative way to measure
deviation from isometry. In a direct comparison to AKVF deformations these
new near-isometric energies show a better area preservation at the expense of a
slightly higher angle deviation. We also note that close-to-equiareal deformations
have not been studied thoroughly in the literature. Even though it is well known
that these maps are not uniquely defined, for φ → 0 we get close to this limit,
and even though the condition of system matrices degrades we obtain meaningful
results.

Relation to Linear Elasticity. Our geometrically-motivated energy formu-
lation can be related to physically-based theory of linear elasticity (see, e. g.,
[26]). This formalism assumes that a rest configuration with material coordi-
nates X is deformed by a displacement field u = x −X into a deformed shape
x. The deformation results in an isotropic internal potential deformation en-
ergy ψ = µ||ε||2F + λ

2 Tr ε2 that depends on a local strain tensor ε, which is
usually defined using the deformation gradient tensor F = ∇X x = H + I with
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displacement gradient tensor H = ∇X u. Here µ and λ are the physical Lamé
constants, which are related to stiffness and volume preservation, respectively.
For small displacement gradients the Lagrangian finite strain tensor ε can be
approximated by the linearized small strain tensor

ε :=
1

2

(
FTF− I

)
=

1

2

(
H + HT + HTH

) ||H||F�1
≈ 1

2

(
H + HT

)
,

and the linear elasticity energy becomes

ψ =
µ

4

∣∣∣∣H + HT
∣∣∣∣2
F

+
λ

2
TrH2 .

It measures the potential energy of the deformed shape x relative to the rest
configuration X, which is different to our instantaneous deformation energies
that doesn’t use the notion of a rest post. Still, in the limit of instantaneous
deformations, i. e., x → X, we have H → J, i. e., the displacement gradient be-
comes the vector field Jacobian. Both the physical linear elasticity model and our
geometrically motivated energy formulation therefore coincide in this case with
the relation of parameters wq = µ

4 and wr = λ
2 . However, as we don’t need to

consider deformed shapes in different coordinate systems, our instantaneous ap-
proach doesn’t require artificial regularization method like corotational elasticity
[28] to correct artifact of diverging coordinate systems X and x. Additionally,
our instantaneous approach is unconditionally stable and we can therefore ap-
ply standard explicit ODE solvers for integration and require no, e. g., implicit
integration. Moreover, this derivation shows that as-Killing-as-possible deforma-
tions [29] can be regarded as a geometric special case of physically-based linear
elasticity that describes near-isometric materials. Additionally, in this work we
provide the parameters for materials that show near-conformal behavior, which
might not always give physically plausible results.

Limitations and Future Work. Nonlinear methods are expensive. Although
we use a parallelized GPU implementation it is impossible to outperform linear
methods in terms of computation time. This is a general drawback, and the user
must decide if the additional cost is worthwhile. Still, all shown examples were
modeled interactively.

Until now we consider only space deformations. So far, there is no extension
to the explicit deformation of surfaces that are embedded in 3d space. This
is because the vector field Jacobians capture only the tangential components
of the vector field. They do not measure variations normal to the surface. For
the same reason approximate Killing vector fields are, until now, considered
only tangentially for triangle meshes [30]. We believe that this is an interesting
direction for future research direction.

So far we consider only the initial value problem for path constrained de-
formation. It is much harder to solve the boundary value problem to find an
energy minimizing path between two poses, e.g., for interpolation between poses
(cf. [21,13]). We would like to use our generalized energy in such settings.
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We furthermore want to study the application of generalized energies for
parametrization applications to allow locally varying conformal / equiareal pa-
rametrization. Moreover, the eigen-spectrum of the energy might allow a mul-
tiresolution (in the parameter φ) segmentation of shapes.

8 Conclusions

In this paper we introduce a novel generalized metric energy for continuous shape
deformation. We obtain near-isometric and near-conformal deformations by in-
tegration of as-isometric-as-possible and as-conformal-as-possible vector fields.
Our approach works for two and three dimensions, we have applied it for defor-
mations of triangular and tetrahedral meshes. For the discretization of the energy
we have introduced a first order smoothness criterion based on the energy itself
that guarantees vector field differentiability at handle vertices. Our implemen-
tation uses the GPU to achieve interactivity and we support nonhomogeneous
and anisotropic behavior.

A Smoothness Regularization

Given a generalized pointwise energy

eφ := wq
∣∣∣∣J + JT

∣∣∣∣2
F

+ wr (TrJ)
2

the derivative w.r.t. J is given by
∂

∂J
eφ =

∂

∂J
wq
∣∣∣∣J + JT

∣∣∣∣2
F

+ wr (TrJ)
2

=
∂

∂J
wq Tr

(
J + JT

)T(
J + JT

)
+ wr (TrJ)

2

=
∂

∂J
wq
(
2 TrJTJ + 2 TrJJ

)
+ wr TrJTrJ

= 4wq J + 4wq J
T + wr (I TrJ + TrJ I)

= 4wq
(
J + JT

)
+ 2wr TrJ I .

Given two neighboring cells ci, cj ∈ T with local energy parameters φi, φj , we
enforce smoothness by minimizing the variation of derivatives along a common
edge (n = 2) or face (n = 3) Bi,j = Ωi ∩ Ωj , i. e., we regularize by minimizing
smoothness energies of the form

Ei,jS (v, φ) =

∫
Bi,j

∣∣∣∣∣∣∣∣ ∂∂Jj eφj − ∂

∂Ji
eφi

∣∣∣∣∣∣∣∣2
F

dx

= Bi,j
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∂Ji
eφi

∣∣∣∣∣∣∣∣2
F

= Bi,j

∣∣∣∣∣∣4(Dq
i,j + Dq

i,j
T
)

+ 2 TrDr
i,j I

∣∣∣∣∣∣2
F

with Ds
i,j = wsj Jj − wsi Ji and wsi = ws(φi) for s ∈ {q, r}, and common edge

length or face area Bi,j = |Bi,j |. The integral can be simplified this way as the
Jacobians are constant on each cell.
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