
Eurographics Conference on Visualization (EuroVis) 2014
H. Carr, P. Rheingans, and H. Schumann
(Guest Editors)

Volume 33 (2014), Number 3

Opacity Optimization for Surfaces

Tobias Günther1 Maik Schulze1 Janick Martinez Esturo2 Christian Rössl1 Holger Theisel1

1Visual Computing Group, University of Magdeburg 2Max Planck Institute for Informatics, Saarbrücken

Figure 1: Stream surfaces in a SQUARE CYLINDER flow, inside a STATIC MIXER and in a RAYLEIGH-BÉNARD convection
(left to right). Our method fades out unimportant surfaces to clear the view on interesting structures, e.g., vortex cores. The
visualizations are view-dependent, frame-coherent, at interactive rates (13–50 fps), and with 3–15 opacity updates per second.

Abstract
In flow visualization, integral surfaces rapidly tend to expand, fold and produce vast amounts of occlusion. While
silhouette enhancements and local transparency mappings proved useful for semi-transparent depictions, they still
introduce visual clutter when surfaces grow more complex. An effective visualization of the flow requires a balance
between the presentation of interesting surface parts and the avoidance of occlusions that hinder the view. In this
paper, we extend the concept of opacity optimization to surfaces to obtain a global approach to the occlusion
problem. Starting with a partition of the surfaces into patches, we compute per-patch opacity as minimizer of
a bounded-variable least-squares problem. For the final rendering, opacity is interpolated on the surfaces. The
resulting visualization technique is interactive, frame-coherent, view-dependent and driven by domain knowledge.

This is the authors preprint. The definitive version is available at http://diglib.eg.org/ and http://onlinelibrary.wiley.com/.

1 Introduction

Surface rendering is a classic tool to convey information in
computer graphics and many other application domains. It is
well-understood how to render surfaces technically and how
to use sophisticated shading and rendering styles to facilitate
the perception of the scene. Perception, however, is limited
in the presence of occlusion to which the use of transparency
is a common approach. For the rendering of transparent sur-
faces, visual cues such as opacity at grazing angles or silhou-
ettes are key to convey shape. Still, multiple surfaces or even
one single complex surface can result in heavily occluding
cues. This may make it difficult to faithfully capture shape
information from an image. In fact, this may even be impos-
sible if occlusion hinders the view on relevant structures.

We address the occlusion problem, and we motivate this
work in the context of flow exploration in scientific visu-
alization. There, the rendering of stream lines and stream
surfaces are standard tools to visualize steady vector fields.
Unfortunately, their use is often limited even for simple data
sets: the user is interested in understanding a volume domain
that is covered by line structures or surfaces that are typ-
ically complex and experience a high degree of occlusion.
This makes it difficult for the user to discover and to explore
the relevant structures, e.g., vortex cores, and hence to un-
derstand the data set. Our goal is to facilitate the interactive
rendering of complex surfaces with a high degree of (self-)
occlusion such that important surface features and cues are
visually communicated.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Tobias Günther, Maik Schulze, Janick Martinez Esturo, Christian Rössl & Holger Theisel / Opacity Optimization for Surfaces

Recent work by Günther et al. [GRT13] solves the occlu-
sion problem for dense line fields by a global opacity opti-
mization. We pick up the general idea and extend it for the
rendering of transparent surfaces as in Fig. 1. These automat-
ically rendered images give a good impression of the under-
lying flow. For this, our method balances occlusion avoid-
ance and an importance-driven representation of shape to
provide a clear view with visual cues supporting an intuitive
comprehension of the visualized shapes. We partition the
surfaces into patches in a preprocess and compute at runtime
for each patch an opacity by minimizing a view-dependent
and frame-coherent energy that penalizes occlusions.

2 Background

Surface rendering is particularly challenging if the given
shapes imply information that should be communicated best
to a viewer. On the one hand, one can help the viewer to
convey shape by putting emphasis on significant surface fea-
tures. On the other hand, one has to avoid occlusions. Both
aspects were intensively researched, as shown in Section 2.1.
Our method balances both shape presentation and occlusion
avoidance, based on a method explained in Section 2.2.

2.1 Illustrative Surface Rendering

Conveying Shape. Comprehensible rendering of 3D shapes
has a long tradition and was pioneered by Saito and Taka-
hashi [ST90], who extracted discontinuities, edges and con-
tour lines in screen space. Interrante et al. [IFP96] placed
curvature-oriented strokes on transparent iso-surfaces. Nien-
haus and Döllner [ND04] rendered technical blueprints by
peeling the layers of complex compound objects and ex-
tracted edges per layer. Luft et al. [LCD06] amplified high
frequencies in the depth buffer by unsharp masking to
emphasize depth discontinuities. Beside silhouettes, vari-
ous classes of surface curves were suggested to enhance
shape understanding like suggestive contours by DeCarlo et
al. [DFRS03], apparent ridges by Judd et al. [JDA07] and
Laplacian lines by Zhang et al. [ZHXC09]. To improve the
perception of transparent surfaces, Wang et al. [WGM∗08]
proposed an interactive tool for color design in illustrative
visualizations that respects intermixing of colors of trans-
parent objects. Vergne et al. [VPB∗09] warped environment
light around surface features to enhance shape perception.

Occlusion Avoidance. Occlusion is typically avoided by
transparency. Viola and Gröller [VG05] compiled a survey
on smart visibility in visualization, including cutaways and
ghosting, which are mainly utilized in direct volume render-
ing. There, Viola et al. [VKG04] adapted opacity dependent
on importance. Bruckner and Gröller [BG07] improved on
the perception of spatial relations by using volumetric ha-
los. Chan et al. [CWM∗09] adjusted opacity based on psy-
chological principles, whereas Correa and Ma [CM11] used
visibilty histograms to assist in transfer function design. For
surfaces, Diepstraten et al. [DWE02] addressed transparency

in technical illustrations by capturing styles and choices
of technical artists. There exist other conceptually different
ways to avoid occlusion like exploded views [APH∗03] or
interactive spatial separation by deformation [CSC07].

Flow Visualization. In flow visualization surfaces are used
to visualize complex data [BCP∗12], which has a long tra-
dition as can be observed for the manually crafted illus-
trations in text books [AS84]. The rendering of integral
surfaces [ELC∗12], as a field of geometric flow visualiza-
tion [MLP∗10], was actively studied in recent years. To
avoid occlusions Born et al. [BWF∗10] interactively selected
cuts and surface slabs, which were rendered by halftoning
with additional line contours. Spencer et al. [SLCZ09] sug-
gested the texturing of evenly-spaced streamlines on sur-
faces. Carnecky et al. [CSFP12] computed line integral con-
volution on transparent surfaces by an anisotropic diffusion
of spot noise. Hummel et al. [HGH∗10] enriched the sur-
faces by adaptive view-dependent line textures that represent
tangent curves and time lines. Moreover, they proposed two
transparency mappings that accentuate grazing angles. We
summarize their approaches as we compare them with our
method: Angle-based transparency maps the dot product be-
tween normal and eye vector to transparency:

αangle =
2
π

arccos〈n,v〉 . (1)

Normal variation considers screen space partial derivatives
∂/∂u and ∂/∂v of the view space normal’s z-component:

αnormal =

(
(

∂nz

∂u
)2 + (

∂nz

∂v
)2
)γ/2

. (2)

Carnecky et al. [CFM∗13] addressed the perception of the
layer order of transparent surfaces by a diffusion of silhou-
ettes and halos that makes surface crossings distinguishable.

2.2 Opacity Optimization for Lines

The global opacity optimization method by Günther et
al. [GRT13] adaptively fades out line parts such that the view
is cleared on important structures. Thereby, the meaning of
importance is application-dependent and allows to steer the
visualization by domain knowledge. Opacity optimization
minimizes an energy to compute opacity for line segments
in a view-dependent, frame-coherent and globally-optimal
way: In a preprocessing step, lines are first uniformly par-
titioned into n polyline segments. Then, opacity values αi,
with i ∈ {1, . . . ,n}, are computed for each segment as mini-
mizer of an energy E that formalizes desired properties:

E = p
n

∑
i=1

(αi−1)2 (3)

+ q
n

∑
i=1

n

∑
j=1

(
αi (1−gi)

λ hi j g j

)2
(4)

+ r
n

∑
i=1

n

∑
j=1

(
αi (1−gi)

λ h ji g j

)2
(5)

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Tobias Günther, Maik Schulze, Janick Martinez Esturo, Christian Rössl & Holger Theisel / Opacity Optimization for Surfaces

+ s
n

∑
i=1

n

∑
j=1

ai j(αi−α j)
2 (6)

with bounded variables 0 ≤ αi ≤ 1 (0 for transparent and
1 for opaque). The first term (3) penalizes deviation from
opaqueness, striving for as-visible-as possible primitives. By
using a per-segment importance gi and the occlusion degree
hi j that tells how much a segment i occludes another segment
j, the second term (4) penalizes unimportant lines (1− gi
is high) in front of important ones (g j is high). The occlu-
sion degree hi j is obtained by rasterization by counting the
number of occluded fragments. Similarly, the third term (5)
removes background clutter by fading out unimportant lines
behind important ones. In both (4) and (5), the parameter λ

steers the emphasis of important structures, i.e., the fall-off
of gi from 1. The last term (6) is a smoothness term that en-
forces low opacity variation among adjacent line segments
(ai j ∈ {0,1}). The four terms are weighted. For a normal-
ization p = 1 the choices for q,r,s are discussed in [GRT13].
The minimization of E requires the numerical solution of a
bounded-variable least-squares problem.

3 Problem Statement and Contribution

The most common approach to address occlusion of surfaces
is to render them semi-transparently. The perception of sur-
face order thereby resides in two key aspects: surface opacity
and presentation of edges. The standard opacity mappings
are local and accentuate grazing angles: angle-based trans-
parency (1) and normal variation (2). When surfaces have
low curvature or their boundary is not seen at a grazing an-
gle, they are difficult to perceive. The more opaque a surface
is, the better surfaces behind can be classified as such. Thus,
our first objective is to only use transparency where strictly
needed, which requires global occlusion information.

Carnecky et al. [CFM∗13] applied insights from cogni-
tion to produce silhouettes that allow to deduce the order
of surfaces. However, both the local transparency mapping
approaches, as well as the straightforward and smart silhou-
ette renderings tend to produce too many visual cues that
occlude each other if surfaces are complex. Under certain
views edges might appear that confuse the viewer, see Fig. 2.
Therefore, our second objective is to reduce the opacity of
unimportant visual cues if they hide important structures.

While the established visual cues, such as opacity at graz-
ing angles and edge enhancements, work well for many
cases, they start to fail in complex scenarios. In this paper,

Figure 2: Even for rather simple surfaces, silhouettes may
be distracting if the object of interest is hidden. Opacity op-
timization: off (left) / on (right).

we propose a filtering of visual cues by transparency that is
not just based on local measures, but respects the occlusion
of structures and their associated user-defined importance.

4 Opacity Optimization for Surfaces

Günther et al. [GRT13] recently solved the occlusion prob-
lem for line rendering, which is summarized in Section 2.2.
We seize their formulation of opacity optimization as a
global optimization problem, and we reformulate it such that
it can be used for surface rendering. An overview of our
method is shown in Fig. 3. Starting with a partition of the
initial surfaces 3(a) into patches 3(b), we compute for each
patch an opacity by minimizing an energy that balances oc-
clusion avoidance and presentation of visual cues. In our
examples, cues originate from the smart transparency tech-
nique of Carnecky et al. [CFM∗13]. For rendering, the re-
sulting opacities are interpolated across the surface 3(c).

(a) Initial surfaces (b) Patches & centers (c) Result

Figure 3: Overview: Starting with an initial set (a), we parti-
tion all surfaces into n patches (b), compute optimal opacity,
which is interpolated on the surface (c). Here, n = 100.

4.1 Surface Partition

In a preprocessing step, we partition the given surfaces into
patches. This corresponds to the subdivision of lines into
polyline segments in [GRT13], however, this step is nontriv-
ial for surfaces. In order to solve this problem, we apply a
vertex clustering based on geodesic distance. This can be
interpreted as computing discrete Voronoi cells on the man-
ifold surfaces. Assume we are given a set of seed vertices
on the surface that act as centers of cells or equally as clus-
ter representatives. We compute the approximate geodesic
distance from each center to all other non-center vertices,
and we assign each of these vertices to the cell whose center
is nearest. Fortunately, the computation of highly accurate
approximate geodesic distances can be done very efficiently
by reformulation as a discrete heat-flow problem [CWW13]:
This requires only the factorization of two sparse symmetric
positive definite linear operators as the most expensive step.
After that the computation of all distances can be done by
backsubstitution. We use a farthest point seeding to place
the centers. Starting from a randomly chosen vertex, we it-
erate the following step: place a new center at a vertex that
has maximum geodesic distance to all existing centers. The
iteration stops if the partition is fine enough, i.e., the cell size
is below a threshold or a certain number of cells is reached.

The partition based on geodesic distance is reasonable as

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Tobias Günther, Maik Schulze, Janick Martinez Esturo, Christian Rössl & Holger Theisel / Opacity Optimization for Surfaces

it tends to produce compact, “convex” cells with a good ra-
tio of circumference to area. We observe that the partition
by greedy farthest point seeding is, even though it is not per-
fectly regular, good enough for the purpose. This means that
we can avoid global patch rearrangement, e.g., by a Lloyd
relaxation [Llo82], which has a slow convergence.

4.2 Averaging and Interpolation

Given is a set of surface meshes with vertices V . The parti-
tion of the surfaces is given as a map C : V →C where C ⊂V
denotes the cell centers, which in turn represent patches. We
use the preimage C−1(i) = {`∈ V |C(`) = i} to describe the
set of all vertices in a cell. In the remainder of this section,
we use indices i, j for centers and ` for general vertices. For
the subsequent steps, we require operators for averaging and
interpolation of values.

The first one is straightforward. Given some quantity x
that is defined per vertex (denoted by x`), we define

avgx(i) := |C−1(i)|−1
∑

`∈C−1(i)
x` ,

where | · | denotes the cardinality of a set.

By interpolation we refer to computing new values at ar-
bitrary vertices from values given at centers. This is a bivari-
ate scattered data interpolation problem with samples dis-
tributed on a manifold. Finding a “high quality”, smooth in-
terpolating function is a nontrivial problem that is possibly
computationally expensive, e.g., requires the solution of a
linear system. For our application, we require first of all a
highly efficient interpolation scheme. Thus, we locally ap-
ply Shepard’s method (see, e.g., [HL93]), which is a kind of
inverse distance weighting. Distances dg(`, i) from vertex `
to center i are the geodesic distances (see previous section).
Given any vertex ` ∈ V we defineNk(`)⊆ C as its k nearest
centers w.r.t. dg. To evaluate a quantity x we use the subset
{xi | i ∈Nk(`)} of the values given at centers to define

interpx(`,k) :=
∑i∈Nk(`) wi xi

∑i∈Nk(`) wi
with wi = dg(`, i)−2 .

with interpx(i,k) = xi for centers i ∈ C. The function
interpx(`,k) provides interpolation of values at centers with
constant precision but without any theoretical guarantees on
smoothness and continuity when evaluated, e.g., for adja-
cent vertices. This is sufficient for our purpose, even though
it is not a high quality interpolation. The main advantage is
that this simple scheme can be evaluated efficiently. Its over-
all smoothness can, to some extent, be steered by the ex-
ponent for the inverse distance; we found that weights d−2

g
provided best results. Here we use k = 3, which is small for
typical uses of Shepard’s method. We do this because first,
we found that in our setting the quality of interpolation is
still good enough. Fig. 4 shows the quality of an interpola-
tion of mean curvature that was averaged at centers for par-
titions of decreasing number of patches n and k = 3. Second,

this allows to store the indices of nearest centers simply as a
3-vector, i.e., N3(·) is a coordinate look-up, which enables
efficient interpolation on the GPU. We precompute nearest
centers and interpolation weights once in a preprocess.

4.3 Optimization

Our surface opacity optimization is based on opacity opti-
mization for 3D line fields [GRT13], which is reviewed in
Section 2.2. The main differences consist in the use of sur-
face patches instead of polyline segments and a modifica-
tion of the energy functions. In particular, the coefficients gi,
hi j and ai j are computed differently. Note that all sums in
the energy function now iterate over patches or their centers
i, j ∈ C, respectively. We abstain from a formal redefinition.

Change of Energy. Opacity is computed for discrete ele-
ments. In the surface case, these are patches that result from
partitioning. All quantities are measured on patches: patch
importance gi is an average of the importance values pre-
scribed per vertex, for which choices are discussed in Sec-
tion 4.4. For all examples, we use gi = avgH(i), where H
is the mean curvature estimated at every vertex. The occlu-
sion degree hi j is determined from rasterization on fragment
level, which is detailed below in Section 4.5. We use a dif-
ferent notion of adjacency than for lines: The coefficients
ai j > 0 that contribute to the smoothness term (6) are now no
more either 0 or 1 but continuous values that reflect geodesic
distance. Thereby, centers closer to each other receive higher
penalty if their opacity differs. We define for centers i, j ∈ C

ai j :=
dg(i, j)−2

∑k∈N4(i)\{i} dg(i,k)−2 ,

with the convention that ai j = 0 whenever i is not within the
four nearest neighbors of i, which can be interpreted as the
denominator approaching infinity. Note that i ∈N4(i), since
i is the closest center to itself. Thus, 3 centers are looked up.

Energy term (3) penalizes deviation from opaqueness. As
we generally render transparent surfaces, we replace it by

p ∑
i∈C

(αi− t)2 , (7)

which includes a user-specified target opacity 0 < t ≤ 1. The
modified energy is still frame-coherent and leads to a least-
squares problem with unknown opacity values bounded in
[0,1], as described in [GRT13]. We use the same algorithm
for the numerical solution.

per vertex n = 2000 n = 1000 n = 400
Figure 4: Mean curvature is estimated per vertex, then av-
eraged per patch and interpolated for n patches.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Tobias Günther, Maik Schulze, Janick Martinez Esturo, Christian Rössl & Holger Theisel / Opacity Optimization for Surfaces

Figure 5: Occlusion degrees hi j are obtained by rasteriza-
tion: The contribution of centers (•) to the rasterized frag-
ment’s (�) opacity is reconstructed. For each vertex (•) of
the rasterized triangle the k = 3 closest centers are consid-
ered. (For illustration, their distances are shortened.) The
center-to-fragment contribution is the product of interpola-
tion weight (—) and barycentric weight (—).

Evaluation of Opacity. Finally, the computed optimal
opacity values ai at centers i ∈ C are interpolated within
patches such that every vertex ` ∈ V is assigned an opacity

α` = interpα(`,3) .

At rasterization, opacity is linearly interpolated in triangles,
resulting in a fragment opacity. As silhouettes are key to un-
derstand surface ordering, we apply a transfer function to the
opacity of silhouette fragments to fade them out slower

α← 1− (1−α)η (8)

Increasing η keeps silhouettes longer, see later Section 5.2.

4.4 Importance Function

The importance gi indicates surface parts worth to look at.
In fact, the success of our method depends on its correlation
to relevant structures. It might originate in local geometric
information, might be sampled from scalar fields, or might
be global information such as distance to a tumor. Conse-
quentially, importance is strongly application-dependent and
driveable by domain knowledge. However, simple geometric
measures exist that work well in many cases, e.g., in all ex-
amples, we used mean curvature. Note that for gi = 1 surface
parts do not vanish since Eqs. (4) and (5) evaluate to zero.

4.5 Computing Occlusion Degree on Fragment Level

The coefficients hi j in the energy term measure the occlusion
that patch i causes by occluding another patch j. Similarly
to [GRT13], we determine the occlusion after rasterization
on fragment level. For each fragment we look up the cen-
ters and interpolation weights used for opacity interpolation.
These are the k = 3 nearest centers for each vertex of the ras-
terized triangle and thus 3k centers in total per fragment (see
Fig. 5). We maintain for every pixel a sorted linked list of
the rasterized fragments [YHGT10], from which we obtain
all “occluder-occludee” fragment pairs. Then we identify for
every fragment pair the 3k centers F ⊂ C of the fragment in
front as well as for every fragment behind the respective cen-
ters B ⊂ C. Every fragment pair introduces a small amount
of occlusion for the 3k×3k front-back center pairs i, j, with
i ∈ F and j ∈ B. The amount of occlusion is the product of

the contribution of i to the occluder fragment and of j to
the occluded fragment’s opacity. For deducing the contribu-
tion of a center to a fragment, we store for each fragment
the primitive ID (generated by the graphics runtime) and the
barycentric coordinate of the fragment in the rasterized trian-
gle. Based on the primitive ID, we look up contributing ver-
tices, their k nearest centers and the interpolation weights.
These weights are w.r.t. the triangle vertices, and they are
multiplied by the barycentric weights to get per-fragment oc-
clusion degrees. The total occlusion degree hi j is determined
as the sum of all contributions to fragments. We do not pe-
nalize self-occlusion of patches to prevent fading at grazing
angles, i.e., we set hii = 0.

5 Usage and Parameters

This section elaborates on the choice of surfaces for visual-
izing flow data, the selection of parameters and their effect,
as well as implementation details on rendering and solving.

5.1 Input Surface Set

Opacity optimization only reveals structures that are con-
tained in the set, thus the input surface set should be selected
carefully. For the examples in this paper, we used Hultquist’s
algorithm [Hul92] for extraction and placed the seed curve
manually. This can be facilitated by dragging flow-aligning
surfaces [MSRT13b] for a more intuitive interaction.

There are methods for an automatic placement that could
be used as well, e.g., Martinez Esturo et al. [MSRT13a] ex-
tract one single representative surface that is globally opti-
mal w.r.t. a quality measure. Schulze et al. [SMG∗14] and
Edmunds et al. [ELM∗12] present methods that produce
multiple characteristic stream surfaces automatically, which
is suitable for an exploration task.

5.2 Parameter Selection

We inherit the scene-dependent parameters introduced by
[GRT13]. We discuss these parameters in the following.
First, the total number of surface patches n is chosen. A
higher number of patches leads to a more local adaptation
of the surface opacity and thus preserves details, however,
at the cost of higher solving timings. Fig. 6 depicts differ-
ent choices for n. Most often, we used n = 400, cf. Table 1.
The effect of parameters in the energy function E (see Sec-
tion 2.2) are shown in Fig. 7: The weight q of the occlu-
sion term (4) adjusts the overall opacity in the image. In
Fig. 7 (left), a surface layer is removed to clear the view
on the wake turbulences of a DELTA WING. The weight r
of term (5) steers the removal of background clutter. In our
example, the laminar stream surfaces in the background are
removed to increase the visibility of the wake turbulence be-
hind a WALL-MOUNTED CYLINDER. The weight s of the
smoothness term (6) is used to enforce continuity of the sur-
face opacity, as shown for the STATIC MIXER data set. If not

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Tobias Günther, Maik Schulze, Janick Martinez Esturo, Christian Rössl & Holger Theisel / Opacity Optimization for Surfaces

Occlusion term (4),
top: q = 0, bottom: q = 0.2

Background clutter term (5),
top: r = 0, bottom: r = 0.3

Smoothness term (6),
top: s = 0, bottom: s = 50

Emphasis exponent λ (4)&(5),
top: λ = 1, bottom: λ = 10

Figure 7: Study of the parameters inherited from opacity optimization [GRT13]

mentioned otherwise, we set s = 50. Finally, the emphasis
exponent λ in (4) and (5) stresses important structures: Fig. 7
(right) depicts the aerodynamics around a HELICOPTER in
ground effect, studied for brown-out conditions. Of particu-
lar interest is the green vortex in front of the helicopter, as it
entrains sand particles that hinder the pilot’s view.

In Section 4.3, we introduced two additional parameters
both with a recommended default value. First, the target
opacity t in (7) is used to let surfaces strive for being almost,
but not completely, opaque. A high value proved useful, as
it supports the perception of layer order. We recommend
t = 0.9, which is used in all examples. Second, silhouette
opacity is steered by parameter η, introduced in (8), to con-
trol how fast silhouettes fade out. The effect is demonstrated

n = 400,
solve: 18ms

n = 1000,
solve: 44ms

n = 2000,
solve: 105ms

Figure 6: Solve rates for varying number of patches n. Using
a higher number of patches preserves details, though n =
400 already proved useful.

in Fig. 8. As edges are helpful to hint how nearly invisible
surfaces pass in front of important structures, a high value is
recommended. In all our examples, η = 10 is used.

6 Details on Rendering and Solving

Similar to [GRT13], we execute rendering and solving in
different threads to enable an interactive response. We use
fragment linked lists [YHGT10] for both the rendering of
transparent surfaces (cf. Maule et al. [MCTB11]) and the ex-
traction of occlusion degrees. The latter is done in the solver
thread on the CPU, thus fragment linked lists are copied to
RAM. We construct two separate lists, one for rendering and
one at quarter resolution for computing occlusion degrees.
The solver thread assembles the system matrix and right-
hand-side and solves the system as described in Section 4.3.
The rendering thread repeatedly executes two steps:

1 Render surfaces at low resolution (for computing hi j)

a. Create and sort fragment linked lists
b. Stream lists to RAM and pass to solver thread

2 Render surfaces on full resolution

a. Upload new opacities (if solver has new solution)
b. Create and sort fragment linked lists
c. Establish adjacency pointers (for diffusion)
d. Inject black silhouette and white halo intensities
e. Diffuse silhouettes and halos (we used 5 iterations)
f. Blend fragment lists front-to-back
g. Render shadow on ground plane using [JB10]

Opacity optimization and the silhouette extraction by Car-
necky et al. [CFM∗13] (steps 2c-2e) are easily combined
as they are both based on fragment linked lists. As a visual
hint for the layer order, Carnecky et al. inject and diffuse
white and black color at silhouettes, see Fig. 9. We modu-
late the injected intensity by the opacity of the fragment that

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Tobias Günther, Maik Schulze, Janick Martinez Esturo, Christian Rössl & Holger Theisel / Opacity Optimization for Surfaces

Figure 8: Silhouette edges depend on the surface opacity,
and can be longer conserved by an η-exponent. Left to right:
η = 1 (neutral), η = 10 (recommended), η = 50.

caused the silhouette. For the white halos, we require in ad-
dition to the adjacent fragments access to the predecessor of
a fragment to lookup the occluder’s opacity. Thus, we create
doubly-linked lists in (2b).

7 Results and Discussion

Fig. 10 compares our global method with established local
approaches. These are (from left to right): constant opacity,
angle-based transparency and normal variation [HGH∗10]
(see (1) and (2), resp.), and smart transparency [CFM∗13],
i.e., constant opacity adapted to the number of layers with
silhouettes and halos to visualize surface layer order. The
last column depicts results of our surface opacity optimiza-
tion, for which we used mean curvature as importance.

The first row shows stream surfaces in a STATIC MIXER.
Here, the central vortex core is of interest (blue surface).
Opacity optimization removes distracting surface parts, e.g.,
the blue part pointed out in Fig. 2, as well as the orange
and green surface parts in front of and behind the core. This
yields a clearer view of the interesting region.

The second row depicts a RAYLEIGH-BÉNARD

CONVECTION, simulated using the free flow solver
NaSt3DGP [GDN98]. The convection cells are formed by
heating a thin layer of liquid from below. Among the local
methods, especially normal variation (2) excels in outlining
contours of curved surfaces. Due to its low opacity the per-
ception of the layer order is difficult. This is better preserved
by angle-based transparency (1) and by [CFM∗13], though
at the cost of occlusions. Opacity optimization removes the
occlusions and clears the view on the four convection cells.

The third row shows a synthetic TORNADO data set. Here,
the vortex core is of interest, which is hidden behind a num-
ber of space-filling surfaces that represent the outer flow

Figure 9: Black silhouette gradients (J–) and white halo
gradients (–I) are injected at the occluder fragment (�) and
next (�) to the occluded fragment (�), see [CFM∗13] for
details. We modulate their intensity (which is then diffused)
by the opacity of the occluder fragment (�).

region. As seen in the center, normal variation (2) cannot
reproduce planar surfaces faithfully. Surface opacity opti-
mization performed best in accentuating the vortex core and
maintaining context by removal of surface parts in front and
behind the vortex core – the latter producing halos.

In the fourth row, a RAYLEIGH-BÉNARD CONVECTION

is viewed from inside – a scenario that is very useful for in-
teractive exploration. The orange surface in the foreground
hinders the view on the cells, depicted in blue and green.
The removal of unimportant occluding surface parts is not
addressed by local approaches. Therefore, our global sur-
face opacity optimization performed best and removed the
occlusions. We see our method best suited for interactive ex-
ploration scenarios with free camera navigation.

The fifth row illustrates slow blood flow in an ANEU-
RYSM that results in highly folded and complex surfaces. All
local approaches extract a high number of visual cues. Both,
angle-based transparency (1) and normal variation (2), show
important cues but cannot hint layer ordering. Carnecky’s
method [CFM∗13] produces complex silhouettes that are
hard to comprehend due to their sheer number. Our method
removes visual cues to reveal the twisting surfaces in the in-
flow (orange) and the vortex in the aneurysm (blue).

The last row shows a single stream surface approaching a
DELTA WING, which is provided by Markus Rütten. It starts
with a laminar flow, which is problematic for normal varia-
tion (2), and then begins to fold as wake turbulences detach.
Even for simple surfaces, such as these, surface opacity op-
timization adds additional benefit by removing the topmost
layer, clearing the view on the vortex cores.

Fig. 1 (left) shows stream surfaces in the flow around
a SQUARE CYLINDER. The uniformly resampled version
of this vector field was provided by Tino Weinkauf and is
based on the simulation by Camarri et al. [CSBI05]. The
second column of Fig. 7 displays stream surfaces in the flow
around a WALL-MOUNTED CYLINDER, provided by Fred-
erich et al. [FWT08]. Distracting, laminar layers in the back-
ground are effectively removed by surface opacity optimiza-
tion, leading to more visual clarity. The last column of Fig. 7
shows a HELICOPTER in forward flight close to the ground.
This simulation by Kutz et al. [KKKK12] was used to study
brown-out, i.e., the entrainment of sand particles by aerody-
namic uplift and impacting particles. Brown-out clouds hin-
der the pilot’s view and are mainly introduced by a vortex in
front of the helicopter that is shown by the green surface.

7.1 Performance

We measured the performance of our system with an In-
tel Core i7-2600K CPU with 3.4 GHz and Nvidia GeForce
GTX 560 Ti GPU with 2 GB VRAM. All images were ren-
dered with Direct3D at a resolution of 1000×1000 pixels.
Table 1 summarizes timings for preprocessing (surface par-
tition), rendering and solving. Column labels refer to algo-
rithm steps in Section 6. The shadow map used for Fourier

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Tobias Günther, Maik Schulze, Janick Martinez Esturo, Christian Rössl & Holger Theisel / Opacity Optimization for Surfaces

(a) Stream surfaces in a mixer (q = 0.2, r = 0.25, λ = 50).

(b) Stream surfaces in a Rayleigh-Bénard convection (q = 0.4, r = 0.04, λ = 8).

(c) Stream surfaces in a tornado (q = 0.35, r = 0.16, s = 20, λ = 15).

(d) Stream surfaces in a Rayleigh-Bénard convection, viewed from inside (q = 0.03, r = 0.02, λ = 10).

(e) Stream surfaces in a blood vessel with an aneurysm (q = 0.4, r = 0.6, s = 5, λ = 11).

(f) A single highly folded stream surface approaching a delta wing (q = 0.54, r = 0.12, λ = 7).

Figure 10: Comparison with standard techniques, from left to right: constant transparency, angle-based [HGH∗10], normal
variation [HGH∗10], smart transparency [CFM∗13], and our novel surface opacity optimization.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Tobias Günther, Maik Schulze, Janick Martinez Esturo, Christian Rössl & Holger Theisel / Opacity Optimization for Surfaces

Table 1: Performance analysis with time in milliseconds (partition in secs.). Column labels refer to algorithm steps, see Sec-
tion 6. The low resolution and high resolution pass are executed in the rendering thread. The solver thread comprises assembling
of the system matrix (3a) and solving (3b). The asynchronous streaming of fragment linked lists is the bottleneck (bold).

Preprocessing Low Res. Pass Full Resolution Pass Solver
Data set Figs. Partition Tris. n 1a 1b 2a 2b 2c–e 2f 2g 3a 3b
Aneurysm 10(e) 271 s 454k 400 2.24 206.6 0.40 9.53 49.40 1.94 5.03 7.65 6.02
Bénard (in) 10(d) 97 s 246k 400 1.53 198.7 0.26 9.81 48.82 1.95 2.08 4.70 4.62
Bénard (out) 10(b) 97 s 246k 400 1.36 168.2 0.26 6.61 43.80 1.49 2.08 5.68 4.69
Delta Wing 10(f) 182 s 580k 200 2.53 91.2 0.48 7.88 16.19 0.87 6.37 3.04 3.25
Helicopter 7 260 s 484k 400 2.27 117.7 0.42 7.29 22.89 1.02 5.33 5.25 5.02
Square Cyl. 1 48 s 155k 400 0.69 53.9 0.20 2.85 10.94 0.60 2.33 3.13 4.06
Static Mixer 10(a) 4.7 s 33k 200 0.21 98.8 0.12 4.30 24.77 0.99 0.35 3.44 3.57
Tornado 10(c) 220 s 438k 400 2.37 194.7 0.40 9.25 45.30 2.31 4.82 17.8 9.29
Wall. Cyl. 7 62 s 177k 400 0.92 115.5 0.22 4.83 25.46 1.15 3.23 6.62 6.40

opacity mapping [JB10] in step (2f) has a pixel resolution of
512×512 and is filtered by a separated 7×7 Gaussian kernel.

The bottleneck of the system is the time required for
streaming the fragment linked lists to RAM. This is because
streaming is two frames deferred after enqueueing draw calls
in the command buffer. Therefore, the streaming time de-
pends on the rendering time per frame. The solving time was
in our examples generally lower than the streaming time.
Since both run asynchronously, we could have used more
patches without loss of performance. The key to faster opac-
ity updates therefore resides in optimizing the rendering.
Figure 11 compares the performance of enhanced silhouettes
of Carnecky et al. [CFM∗13] with simple silhouettes, ob-
tained by detecting depth discontinuities in image space. The
latter is twice as fast in both rendering and solving, though
at lower visual quality. One way to improve the scalability of
the system is to use the simple silhouette detection or fewer
diffusion iterations in [CFM∗13] during interactive naviga-
tion and to switch to a high quality parameter set whenever
the camera stops moving.

In summary, our rendering achieves interactive rates at
about 13–50 frames per second, depending on the data set
and the view. Due to the streaming bottleneck, opacity solu-
tions are updated only 3–15 times per second. This latency
is hidden similarly as in [GRT13] by slowly fading toward
the latest opacity solution.

7.2 Limitations

Surface opacity optimization removes unimportant surface
parts that occlude important scene elements. This requires

Figure 11: The performance of the silhouette rendering has
great impact on the frames and solves per second. Left: en-
hanced silhouettes [CFM∗13] (12.8 fps, 3.8 sol/s), right: sil-
houettes by depth discontinuity (25.8 fps, 7.5 sol/s).

the presence of visual clutter in the first place, which is
only the case if both unimportant and important regions are
present in the scene. If too many surfaces of likewise high
importance occlude each other, it is impossible to decide,
which surface should be shown. Similarly, surfaces with
equally low importance, such as parallel planar surfaces,
have no distinctive feature to accentuate. For such scenes,
users are required to supply the importance terms with addi-
tional information to decide upon relevance. Besides, impor-
tant structures might occlude each other, thus a notification
of such an event is a possible step for future work. Further-
more, the results depend on the initial surface set, as opacity
optimization only reveals information contained in the set.

8 Conclusions

In this paper, we addressed the occlusion problem for sur-
faces and developed the first global approach that determines
a surface opacity that balances occlusion avoidance versus
importance-driven shape representation. For this, we fade
out surface parts in a view-dependent and frame-coherent
way so that important structures are no longer occluded.
By decoupling rendering and solving, we obtain interactive
rates. Our method targets specifically scenes with multiple
surfaces or highly complex scenes. For such, improvements
over existing local methods are significant.

Future work includes the extension to animated surfaces
and accelerated solving by partitioning the surfaces in a
view-dependent way in the spirit of [GRT14]. Surface opac-
ity optimization can also be extended to point sets, since
geodesics can be computed for them, too [CWW13].

References

[APH∗03] AGRAWALA M., PHAN D., HEISER J., HAYMAKER
J., KLINGNER J., HANRAHAN P., TVERSKY B.: Designing ef-
fective step-by-step assembly instructions. ACM Trans. Graph.
(Proc. SIGGRAPH) 22, 3 (2003), 828–837. 2

[AS84] ABRAHAM R. H., SHAW C. D.: Dynamics – The Geom-
etry of Behaviour. The Visual Mathematics Library. Aerial Press,
Incorporated, 1984. 2

[BCP∗12] BRAMBILLA A., CARNECKY R., PEIKERT R., VI-
OLA I., HAUSER H.: Illustrative flow visualization: State of the
art, trends and challenges. In EG - STAR (2012), pp. 75–94. 2

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Tobias Günther, Maik Schulze, Janick Martinez Esturo, Christian Rössl & Holger Theisel / Opacity Optimization for Surfaces

[BG07] BRUCKNER S., GRÖLLER E.: Enhancing depth-
perception with flexible volumetric halos. IEEE TVCG (Proc.
Vis) 13, 6 (2007), 1344–1351. 2

[BWF∗10] BORN S., WIEBEL A., FRIEDRICH J., SCHEUER-
MANN G., BARTZ D.: Illustrative stream surfaces. IEEE TVCG
(Proc. Vis) 16, 6 (2010), 1329–1338. 2

[CFM∗13] CARNECKY R., FUCHS R., MEHL S., JANG Y.,
PEIKERT R.: Smart transparency for illustrative visualization of
complex flow surfaces. IEEE TVCG 19, 5 (2013), 838–851. 2, 3,
6, 7, 8, 9

[CM11] CORREA C. D., MA K.-L.: Visibility histograms and
visibility-driven transfer functions. IEEE TVCG 17, 2 (2011),
192–204. 2

[CSBI05] CAMARRI S., SALVETTI M.-V., BUFFONI M., IOLLO
A.: Simulation of the three-dimensional flow around a square
cylinder between parallel walls at moderate Reynolds numbers.
In XVII Congresso di Meccanica Teorica ed Applicata (2005). 7

[CSC07] CORREA C., SILVER D., CHEN M.: Illustrative defor-
mation for data exploration. IEEE TVCG (Proc. Vis) 13, 6 (2007),
1320–1327. 2

[CSFP12] CARNECKY R., SCHINDLER B., FUCHS R., PEIKERT
R.: Multi-layer illustrative dense flow visualization. CGF 31, 3
(2012), 895–904. 2

[CWM∗09] CHAN M.-Y., WU Y., MAK W.-H., CHEN W., QU
H.: Perception-based transparency optimization for direct vol-
ume rendering. IEEE TVCG (Vis) 15, 6 (2009), 1283–1290. 2

[CWW13] CRANE K., WEISCHEDEL C., WARDETZKY M.:
Geodesics in heat: A new approach to computing distance based
on heat flow. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 5
(2013), 152:1–152:11. 3, 9

[DFRS03] DECARLO D., FINKELSTEIN A., RUSINKIEWICZ S.,
SANTELLA A.: Suggestive contours for conveying shape. ACM
Trans. Graph. (Proc. SIGGRAPH) 22, 3 (2003), 848–855. 2

[DWE02] DIEPSTRATEN J., WEISKOPF D., ERTL T.: Trans-
parency in interactive technical illustrations. CGF (Proc. Euro-
graphics) 21, 3 (2002), 317–325. 2

[ELC∗12] EDMUNDS M., LARAMEE R. S., CHEN G., MAX N.,
ZHANG E., WARE C.: Surface-based flow visualization. Com-
puters & Graphics 36, 8 (2012), 974–990. 2

[ELM∗12] EDMUNDS M., LARAMEE R., MALKI R., MASTERS
I., CROFT T., CHEN G., ZHANG E.: Automatic stream surface
seeding: A feature centered approach. CGF (Proc. EuroVis) 31,
3 (2012), 1095–1104. 5

[FWT08] FREDERICH O., WASSEN E., THIELE F.: Prediction
of the flow around a short wall-mounted cylinder using LES and
DES. JNAIAM 3, 3-4 (2008), 231–247. 7

[GDN98] GRIEBEL M., DORNSEIFER T., NEUNHOEFFER T.:
Numerical Simulation in Fluid Dynamics, a Practical Introduc-
tion. SIAM, 1998. 7

[GRT13] GÜNTHER T., RÖSSL C., THEISEL H.: Opacity op-
timization for 3D line fields. ACM Trans. Graph. (Proc. SIG-
GRAPH) 32, 4 (2013), 120:1–120:8. 2, 3, 4, 5, 6, 9

[GRT14] GÜNTHER T., RÖSSL C., THEISEL H.: Hierarchical
opacity optimization for sets of 3D line fields. CGF (Proc. EG)
33, 2 (2014), to appear. 9

[HGH∗10] HUMMEL M., GARTH C., HAMANN B., HAGEN H.,
JOY K. I.: IRIS: Illustrative rendering for integral surfaces. IEEE
TVCG (Proc. Vis) 16, 6 (2010), 1319–1328. 2, 7, 8

[HL93] HOSCHEK J., LASSER D.: Fundamentals of Computer
Aided Geometric Design. AK Peters, 1993. 4

[Hul92] HULTQUIST J. P. M.: Constructing stream surfaces in
steady 3D vector fields. In Proc. Vis (1992), pp. 171–178. 5

[IFP96] INTERRANTE V., FUCHS H., PIZER S.: Illustrating
transparent surfaces with curvature-directed strokes. In Proc.
Conference on Visualization (1996), pp. 211–ff. 2

[JB10] JANSEN J., BAVOIL L.: Fourier opacity mapping. In Proc.
I3D (2010), pp. 165–172. 6, 9

[JDA07] JUDD T., DURAND F., ADELSON E.: Apparent ridges
for line drawing. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3
(2007). 2

[KKKK12] KUTZ B. M., KOWARSCH U., KESSLER M.,
KRÄMER E.: Numerical investigation of helicopter rotors in
ground effect. In AIAA Applied Aerodynamics (2012). 7

[LCD06] LUFT T., COLDITZ C., DEUSSEN O.: Image enhance-
ment by unsharp masking the depth buffer. ACM Trans. Graph.
(Proc. SIGGRAPH) 25, 3 (2006), 1206–1213. 2

[Llo82] LLOYD S. P.: Least square quantization in PCM. IEEE
Information Theory 28, 2 (1982), 129–137. 4

[MCTB11] MAULE M., COMBA J. L., TORCHELSEN R. P.,
BASTOS R.: A survey of raster-based transparency techniques.
Computers & Graphics 35, 6 (2011), 1023–1034. 6

[MLP∗10] MCLOUGHLIN T., LARAMEE R. S., PEIKERT R.,
POST F. H., CHEN M.: Over two decades of integration-based,
geometric flow visualization. CGF 29, 6 (2010), 1807–1829. 2

[MSRT13a] MARTINEZ ESTURO J., SCHULZE M., RÖSSL C.,
THEISEL H.: Global selection of stream surfaces. CGF (Proc.
Eurographics) 32, 2 (2013), 113–122. 5

[MSRT13b] MARTINEZ ESTURO J., SCHULZE M., RÖSSL C.,
THEISEL H.: Poisson-based tools for flow visualization. In IEEE
PacificVis (2013), pp. 241–248. 5

[ND04] NIENHAUS M., DÖLLNER J.: Blueprints: Illustrating ar-
chitecture and technical parts using hardware-accelerated non-
photorealistic rendering. In Proc. Graphics Interface (2004),
pp. 49–56. 2

[SLCZ09] SPENCER B., LARAMEE R. S., CHEN G., ZHANG
E.: Evenly spaced streamlines for surfaces: An image-based ap-
proach. CGF 28, 6 (2009), 1618–1631. 2

[SMG∗14] SCHULZE M., MARTINEZ ESTURO J., GÜNTHER T.,
RÖSSL C., SEIDEL H.-P., WEINKAUF T., THEISEL H.: Sets
of globally optimal stream surfaces for flow visualization. CGF
(Proc. EuroVis) 33, 3 (2014), to appear. 5

[ST90] SAITO T., TAKAHASHI T.: Comprehensible rendering of
3D shapes. SIGGRAPH Comp. Graph. 24, 4 (1990), 197–206. 2

[VG05] VIOLA I., GRÖLLER E.: Smart visibility in visualization.
In Proc. Computational Aesthetics (2005), pp. 209–216. 2

[VKG04] VIOLA I., KANITSAR A., GRÖLLER E.: Importance-
driven volume rendering. In Proc. Vis (2004), pp. 139–146. 2

[VPB∗09] VERGNE R., PACANOWSKI R., BARLA P., GRANIER
X., SCHLICK C.: Light warping for enhanced surface depiction.
ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3 (2009), 25:1–8. 2

[WGM∗08] WANG L., GIESEN J., MCDONNELL K. T., ZOL-
LIKER P., MUELLER K.: Color design for illustrative visualiza-
tion. IEEE TVCG (Proc. InfoVis) 14, 6 (2008), 1739–1754. 2

[YHGT10] YANG J. C., HENSLEY J., GRÜN H., THIBIEROZ N.:
Real-time concurrent linked list construction on the GPU. CGF
(Proc. EGSR) 29, 4 (2010), 1297–1304. 5, 6

[ZHXC09] ZHANG L., HE Y., XIE X., CHEN W.: Laplacian
lines for real-time shape illustration. In Proc. I3D (2009),
pp. 129–136. 2

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

